
Reverse Engineering USB Devices

Drew Fisher

December 28, 2011



whoami

Drew Fisher (zarvox)
I maintain libfreenect, a set of reverse-engineered Kinect drivers.
http://github.com/OpenKinect/libfreenect



What we’ll cover

Introduction

Motivation

USB Primer

Protocol Reverse Engineering

Vision for future

Questions



Motivation: cool new devices!

I There are USB devices out there that do (really!) neat things

I The more unique the device, the less likely that the vendor
supports it with a non-Windows driver



Motivation: a compatible driver

I We want to speak the same protocol. This protocol is built
atop USB.

I We need to understand the device’s state transitions.

I We need to understand the device’s data.

I So let’s watch the messages that go by, and figure out which
ones are which.



Motivation: a compatible driver

I We want to speak the same protocol. This protocol is built
atop USB.

I We need to understand the device’s state transitions.

I We need to understand the device’s data.

I So let’s watch the messages that go by, and figure out which
ones are which.



Motivation: a compatible driver

I We want to speak the same protocol. This protocol is built
atop USB.

I We need to understand the device’s state transitions.

I We need to understand the device’s data.

I So let’s watch the messages that go by, and figure out which
ones are which.



Motivation: a compatible driver

I We want to speak the same protocol. This protocol is built
atop USB.

I We need to understand the device’s state transitions.

I We need to understand the device’s data.

I So let’s watch the messages that go by, and figure out which
ones are which.



USB: just the basics

I Distinction between Host and Device

I All communications are started by the host

I Devices have multiple endpoints which are in effect, separate
data queues



USB Primer - USB endpoint/transfer types

Four types:

I Control

I Interrupt

I Isochronous

I Bulk



USB Primer - Control Transfers

I Host starts a request, specifies request number and direction

I Either host or device transfers data

I Device or host acknowledges transfer if successful

I Every USB Device supports control transfers on endpoint 0



USB Primer - Interrupt Transfers

I Guaranteed bounds on latency

I Attempts retransmission next epoch on error

I Useful to notify host of device state change

I Example: used for Human Interface Device reports (mice,
keyboards)



USB Primer - Isochronous Transfers

I Guaranteed polling rate and bandwidth

I No retransmission

I Useful for avoiding jitter - dropped packets are okay, as long
as stream is realtime

I Example: used for USB Video Class video stream



USB Primer - Bulk Transfers

I Large bursty data

I CRC provides error detection

I Retransmission provides reliable delivery

I Example: USB Mass storage (disks, flash drives)



Putting it together

I Under normal operation, the host’s driver tracks the device’s
state.

I So all information pertaining to state transitions are encoded
in the transfers.

I State changes require reliable delivery.

I Streaming realtime data (like audio) does not.



So now what?

Assumption: we are working with devices that already have
working drivers.
The usual workflow:

1. Obtain USB traces of normal operation

2. Stare at them until they make sense

3. Write driver



Step 1: get data

Hardware loggers:

I TotalPhase Beagle 480

I OpenVizsla – http://openvizsla.org/

Software loggers:

I BusDog – Windows USB filter driver
http://code.google.com/p/busdog/

I /dev/usbmon



Step 2: understand data

I Download/extract TotalPhase Data Center for your platform:
http://www.totalphase.com/products/data center/

I Get USB trace from someone who bought a Beagle 480:
git clone git://github.com/adafruit/Kinect.git

I Open Kinect/USBlogs/enuminit.tdc with Data Center

I Start reading ;)



Pattern matching

Problems developers face
Protocol versioning
Packet framentation and reassembly

Latency measurement



Pattern matching

Problems developers face Solution
Protocol versioning Magic bytes
Packet framentation and reassembly Length/size bytes

Sequence numbers
Latency measurement Timestamps



Structure

Bootloader command:
uint32 t magic;

uint32 t tag;

uint32 t bytes;

uint32 t cmd;

uint32 t address;

uint32 t unknown;



Structure

Audio in transfer:
uint32 t magic; // 0x80000080

uint16 t channel; // Values between 0x1 and 0xa

indicate audio channel

uint16 t len; // packet length

uint16 t window; // timestamp

uint16 t unknown; // ???

int32 t samples[]; // Size depends on len



Step 3: write driver

libusb is pretty cool and makes prototyping easy (compared to
prototyping kernel drivers).
http://www.libusb.org/wiki/libusb-1.0



Live demo!



What should RE tools do?

I Help human notice patterns, especially common ones

I Help human test hypotheses against larger dataset

I Help humans work together



Questions!
http://openkinect.org/


	Introduction
	Motivation
	USB Primer
	Protocol Reverse Engineering
	Vision for future
	Questions

